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Abstract

k-point crossover operators and their recombination sets are studied from different perspectives. We show that transit
functions of k-point crossover generate, for all k > 1, the same convexity as the interval function of the underlying graph. This
settles in the negative an open problem by Mulder about whether the geodesic convexity of a connected graph G is uniquely
determined by its interval function I . The conjecture of Gitchoff and Wagner that for each transit set Rk (x, y) distinct from a
hypercube there is a unique pair of parents from which it is generated is settled affirmatively. Along the way we characterize
transit functions whose underlying graphs are Hamming graphs, and those with underlying partial cube graphs. For general
values of k it is shown that the transit sets of k-point crossover operators are the subsets with maximal Vapnik–Chervonenkis
dimension.

Keywords: Genetic algorithms; Recombination; Transit functions; Betweenness; Vapnik–Chervonenkis dimension

1. Introduction

Crossover operators are a crucial component of Genetic Algorithms and related approaches in Evolutionary
Computation. Their purpose is to combine the genetic information of two parents to produce one or more
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offspring that are “mixtures” of their parents. In this contribution we will be concerned with the specific setting
of crossover operators for strings of fixed length n over an alphabet A of a ≥ 2 letters. Given two parental
strings x = (x1x2 . . . xn) and y = (y1 y2 . . . yn) one may for instance construct recombinant offspring of the form
(x1x2 . . . xi yi+1 yi+2 . . . yn) and (y1 y2 . . . yi xi+1xi+2 . . . xn). The index i serves as a breakpoint at which the two
parents recombine. This so-called one-point crossover can be generalized to two or more breakpoints.

Definition 1.1. Given x, y, z ∈ An we say that z is a k-point crossover offspring of x and y if there are indices
0 = i0 ≤ i1 ≤ i2 ≤ ik = n so that for all ℓ, 1 ≤ ℓ ≤ k, either z j = x j for all j ∈ {iℓ−1 + 1, . . . , iℓ} or z j = y j for
all j ∈ {iℓ−1 + 1, . . . , iℓ}.

Note that this definition states that x and y are broken up into at most k intervals that are alternately included into
z. This convention simplifies the mathematical treatment considerably and also conforms to the usual practice of
including crossovers with fewer than the maximum number of breakpoints. Uniform crossover, where each letter zi

is freely chosen from one of the two parents, is obtained by allowing k = n − 1 breakpoints. We note, furthermore,
that our definition ensures that the parental strings are also included in the set of possible offspring.

Properties of k-point crossover have been studied extensively in the past. Key algebraic properties are described
in [1]. Isomorphisms between the search spaces induced by crossover and mutation with small populations have
been analysed by [2]. A formal treatment of multi-point crossover with an emphasis on disruption analysis can be
found in [3]. A general review of genetic algorithms from the perspective of stochastic processes on populations
can be found in [4]. In this context, crossover operators are represented by stochastic matrices. A similar matrix-
based formalism is explored in [5]. Coordinate transformations, more precisely the Walsh transform [6] and its
generalizations to non-binary alphabets [7] have played an important role in explaining the functioning of GAs in
terms of building blocks and the Schema theorem [8]. As a generalization, an abstract treatment of crossover in
terms of equivalence relations has been given by [9].

Gitchoff et al. [10] proposed to consider the function R : X × X → 2X that assigns to each possible pair
of parents the set of all possible recombinants. They asked which properties of R could be used to characterize
crossover operators in general and explored properties of k-point crossover on strings. In particular, they noted the
following four properties:

(T1) x, y ∈ R(x, y) for all x, y ∈ X ,

(T2) R(x, y) = R(y, x) for all x, y ∈ X ,

(T3) R(x, x) = {x} for all x ∈ X ,

(GW4) z ∈ R(x, y) implies |R(x, z)| ≤ |R(x, y)|.

Mulder introduced the concept of transit functions characterized by the axioms (T1), (T2), and (T3) as a unifying
approach to intervals, convexities, and betweenness in graphs and posets in last decade of the 20th century. Available
as preprint only but frequently cited for more than a decade, the seminal paper was published only recently [11].
For example, given a connected graph G, its geodetic intervals, i.e., the sets of vertices lying on shortest paths
between a pair of prescribed endpoints x, y ∈ V (G) form a transit function usually denoted by IG(x, y) [12] and
referred as the interval function of a graph G. Unequal crossover, where (T3) is violated, has been rarely explored
in the context of evolutionary computation, which the exception of [13]. In this contribution we restrict ourselves
exclusively to the simpler case of homologous string recombination. Thus, from here on we will assume that R
satisfies (T1), (T2), and (T3).

A common interpretation of transit functions is to view R(x, y) as the subset of X lying between x and y.
Indeed, a transit function is a betweenness if it satisfies the two additional axioms

(B1) z ∈ R(x, y) and z ̸= y implies y /∈ R(x, z).

(B2) z ∈ R(x, y) implies R(x, z) ⊆ R(x, y).
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It is natural, therefore, to regard a pair of distinct points x and y without other points between them as adjacent.
The corresponding graph G R has X as its vertex set and {x, y} ∈ E(G R) if and only if R(x, y) = {x, y} and x ̸= y.
The graph G R is known as the underlying graph of R.

Moraglio [14] introduced the notion of geometric crossover operators relative to a connected reference graph G
with vertex set X by requiring – in our notation – that R(x, y) ⊆ IG(x, y) for all x, y ∈ X . In the setting of [14],
the reference graph G was given externally in terms of a metric on X . When studying crossover in its own right
it seems natural to consider the transits sets of R in relation to the intervals of G R itself. Hence we say that R is
MP-geometric if

(MG) R(x, y) ⊆ IG R (x, y) for all x, y ∈ X .

Note the condition (MG) is an axiom for transit functions independent of any externally prescribed structure on X .
Mulder [11] considered a different notion of “geometric” referring transit functions that satisfy (B2) and the axiom

(B3) z ∈ R(x, y) and w ∈ R(x, z) implies z ∈ R(w, y).

Mulder’s version of “geometric” is less pertinent for our purposes because crossover operators usually violate (B2).
Another interpretation of R, which is just as useful in the context of crossover operators, is to regard R(x, y)

as the set of offspring reachable from the parents x and y in a single generation. It is natural then to associate
with R a function R̂ : X × X → 2X so that z ∈ R̂(x, y) if and if only z eventually can be generated from x
and y and all their following generations of offspring. Formally, z ∈ R̂(x, y) if there is a finite sequence of pairs
{xk, yk} so that z ∈ R(xm, ym), {xk, yk} ∈ R(xk−1, yk−1) for all k = 1, . . . , m, x0 = x , and y0 = y. By construction,
R(x, y) ⊆ R̂(x, y) for all x, y ∈ X . If R is a transit function, then R̂ is also a transit function.

We say that R(x, y) is closed if R(x, y) = R̂(x, y). Equivalently, a transit set R(x, y) is closed if and only if
R(u, v) ⊆ R(x, y) holds for all u, v ∈ R(x, y), since in this case nothing can be generated from the children of x and
y that is not accessible already from x and y itself. In particular, all singletons and all adjacencies, i.e., individual
vertices and the edges of G R , are always closed. A transit function R is called monotone if it satisfies

(M) For all x, y ∈ X and u, v ∈ R(x, y) implies R(u, v) ⊆ R(x, y),

i.e., if all transit sets are closed. By construction, R̂ satisfies (M) for any transit function R. A simple argument1

shows that R̂(x, y) = {x, y} if and only if R(x, y) = {x, y}. Thus R and R̂ have the same underlying graph
G R̂ = G R . The sets {R̂(x, y)|x, y ∈ X}, finally, generate a convexity CR consisting of all intersections of the
(finitely many) transit sets R̂(x, y).

One of the most fruitful lines of research in the field of transit functions is the search for axiomatic
characterizations of a wide variety of different types of graphs and other discrete structures in terms of their transit
functions. It is shown in [15] that a function I : V × V → 2V is the geodesic interval function of a connected
graph if and only if I satisfies a set of axioms that are phrased in terms of I only. The axiomatic characterization
of I (u, v) was later improved by formulating a nice set of (minimal) axioms [16]. The all-paths function A of a
connected graph G (defined as A(u, v) = {z ∈ V (G) : z lies on some u, v-path in G}) admits a similar axiomatic
characterization [17]. These results immediately raise the question whether other types of transit functions can be
characterized in terms of transit axioms only.

Since k-point crossover on strings over a fixed alphabet forms a rather specialized class of recombination
operators we ask here whether it can be defined completely in terms of properties of its transit function Rk . Beyond
the immediate interest in k-point crossover operators we can hope in this manner to identify generic properties of
crossover operators also on more general sets X .

This contribution is organized as follows. In Section 2 we consider transit functions whose underlying graphs
G R are Hamming graphs since, as we show in Section 3, k-point crossover belongs to this class. We then investigate
the properties of k-point crossover in more detail from the point of view of transit functions. In Section 4 we switch
to a graph-theoretical perspective and derive a complete characterization of k-point crossover on binary alphabets,
making use of key properties of partial cubes.

1 (i) R(x, y) ⊆ R̂(x, y) by definition, (ii) R(x, y) = {x, y} implies R̂(x, y) = {x, y}, (iii) if R̂(x, y) = {x, y} but R(x, y) ̸= {x, y} either
(i) or axiom (T1) is violated.
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Fig. 1. The last condition of Proposition 2.1, i.e., |V (G)| = 2δ , is necessary as demonstrated by this example of a (0, 2)-graph that is not
a hypergraph [12]. It satisfies all but the last requirement from the proposition.

2. Hamming graphs and their geodesic intervals

In most applications, k-point crossover will be applied to binary strings or, less frequently, to strings over a
larger, fixed-size alphabet A. In a population genetics context, however, the number of alleles may be different for
each locus, hence we consider the most general case here, where each sequence position is taken from a distinct
alphabet Ai with ai := |Ai | ≥ 2 for 1 ≤ i ̸= n. The Hamming graph

∏
i Kai is the Cartesian products of complete

graphs Kai with ai vertices; we refer to the book [18] for more details on Hamming graphs and product graphs in
general. The special case ai = 2 for all i is usually called n-dimensional hypercube K n

2 . The shortest path distance
on

∏
i Kai is the Hamming distance d(x, y), which counts the number of sequence positions at which the strings x

and y differ.
Given a transit function R and a point x ∈ X let δ(x) = |{y ∈ X | |R(x, y)| = 2}|, i.e., δ(x) = δR(x) is the

degree of x in the underlying graph G R . We write δ(R) = maxx∈X δ(x) for the maximal degree of the underlying
graph.

The purpose of this section is to characterize transit functions whose underlying graphs are Hamming graphs.
Our starting point is the following characterization of hypercubes, which follows from results in [12,19]:

Proposition 2.1. Suppose G is connected and each pair of distinct adjacent edges lies in exactly one 4-cycle. Then
G is isomorphic to n-dimensional hypercube if and only if the minimum degree δ of G is finite and |V (G)| = 2δ .

Graphs with the property that any pair of vertices has zero or exactly 2 common neighbours are called (0, 2)-
graphs [12]. We note that the condition |V (G)| = 2δ in Proposition 2.1 is necessary as demonstrated by the example
in Fig. 1. Proposition 2.1 can be translated into the language of transit functions as follows:

Corollary 2.2. Let R be a transit function on a set X with a connected underlying graph. Then the underlying
graph G R is isomorphic to n-dimensional hypercube K n

2 if and only if R satisfies:

(A1) For every x, u, v such that |R(x, u)| = |R(x, v)| = 2 there exists a unique y such that |R(y, u)| = |R(y, v)| =

2,

(A2) δ(R) = n and |X | = 2n .

Proposition 2.1 was generalized to arbitrary Hamming graphs [20]. For any vertex x in the graph G let Ni (x)
denote the number of maximal i-cliques Ki in G that contain the vertex x .

Proposition 2.3 ([20]). Let G be a simple connected graph such that two non-adjacent vertices in G either
have exactly 2 common neighbours or none at all, and suppose G has neither K4 \ e nor K2□K3 \ e (Fig. 2)
as induced subgraph. Then Ni (x) is independent of x and G is isomorphic to the Hamming graph if and only if
|V (G)| =

∏p
h=1 hNi (x), where p is the maximum integer such that Np(x) is nonzero.
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Please cite this article as: M. Changat, P.G. Narasimha-Shenoi, F.H. Nezhad et al., Transit sets of k-point crossover operators, AKCE International Journal of Graphs and Combinatorics
(2019), https://doi.org/10.1016/j.akcej.2019.03.019.

Fig. 2. The forbidden induced subgraphs K4 \ e and K2□K3 \ e appearing in Proposition 2.3.

These results can again be translated into the language of transit functions:

Corollary 2.4. Let R be a transit function with a connected underlying graph. Then the underlying graph G R is
isomorphic to Hamming graph K n

a if and only if R satisfies:

(A1) For every x, u, v such that |R(x, u)| = |R(x, v)| = 2 there exists unique y such that |R(y, u)| = |R(y, v)| = 2,

(A2’) δ(R) = n(a − 1) and |X | = an ,

(A3) There exist no x, y, u, v such that |R(x, u)| = |R(x, v)| = |R(y, u)| = |R(y, v)| = |R(x, y)| = 2 and
|R(u, v)| > 2,

(A4) There exist no x, y, u, v, w, z such that |R(x, u)| = |R(x, v)| = |R(y, u)| = |R(y, v)| = |R(v, w)| =

|R(y, z)| = |R(w, z)| = |R(x, w)| = 2 and |R(u, v)|, |R(u, w)|, |R(u, z)|, |R(x, y)|, |R(x, z)|,
|R(v, z)|, |R(y, w)| > 2.

The representation of Hamming graphs as n-fold Cartesian products of complete graphs H =
∏n

i=1 Kai implies
a “coordinatization”, that is, a labelling of the vertices reflects this product structure. The geodesic intervals in
Hamming graphs then have very simple description:

IH (x, y) =
{
z = (z1, z2, . . . zn)

⏐⏐zi ∈ {xi , yi } for 1 ≤ i ≤ n
}

(1)

where (x1, x2, . . . xn) and (y1, y2, . . . yn) are the coordinates of the vertices x and y. Thus G IH (x,y) is a subhypercube
of dimension d(x, y) as shown in example in [18]. The intervals of Hamming graphs have several properties that
will be useful for our purposes. A graph is called antipodal if for every vertex v there is a unique “antipodal vertex”
v̄ with maximum distance from v.

Lemma 2.5. Let Q be an induced sub-hypercube of a Hamming graph H. Then for every x ∈ Q there is a unique
vertex x̄ ∈ Q so that Q = IH (x, x̄).

Proof. This follows from a well known fact that hypercubes are antipodal graphs [12]. □

It is well known that IH satisfies the monotone axiom (M) and thus also (B2).

Lemma 2.6. Let Q′ and Q′′ be two induced sub-hypercubes in a Hamming graph H. Then Q′
∩ Q′′ is again an

induced (possibly empty) sub-hypercube of H.

Proof. For every coordinate i , Q′

i = {xi |x ′
∈ Q} and Q′′

i = {xi |x ∈ Q′′
} contain at most two different letters from

the alphabet Ai . Q′
∩ Q′′

=
∏

i (Q′

i ∩ Q′′

i ), and hence a hypercube. □

As an immediate consequence we note that IH satisfies even the stronger property

(MM) For all u, v, x, y ∈ X holds: if R(u, v) ∩ R(x, y) ̸= ∅ then there are p, q ∈ X so that R(u, v) ∩ R(x, y) =

R(p, q).
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The disadvantage of the results so far is that we have to require explicitly that G R is connected. In the light of
condition (MG) above it seems natural to require connectedness of G R for recombination operators in general.

To-date, only sufficient conditions for connectedness of G R are known. Following ideas outlined in [21], we can
show directly that the following property is sufficient:

(CG) For all a, x, y, z ∈ X : If R(a, x) ⊆ R(a, y), then R(a, x) ⊆ R(a, z) ⊆ R(a, y) if and only if z ∈ R(x, y).

As a technical device we will employ the partial order ≤a of X defined, for given a ∈ X , by x ≤a y if and only
if R(a, x) ⊆ R(a, y). As usual, we write x <a y if x ≤a y and x ̸= y. For R = IG we have the equivalence
x ∈ IG(a, y) if and if only x ≤a y.

Lemma 2.7. The underlying graph G R of a transit function R is connected if R satisfies axiom (CG).

Proof. Let R be a transit function satisfying axiom (CG). Let a, b ∈ X be two distinct elements, and let
C = (a = a0, a1, . . . at = b) be a maximal ≤a-chain between a and b, where the elements are labelled in increasing
order a = a0 <a a1 <a a2 <a . . . <a at = b.

We claim that, for any i , 0 ≤ i ≤ n, elements ai and ai+1 form an edge in G R . To see this assume that, on
the contrary, there is an element x ∈ R(ai , ai+1) \ {ai , ai+1} for some i . Then (CG) implies R(a, ai ) ⊆ R(a, x) ⊆

R(a, ai+1), i.e., ai <a x <a xi+1, contradicting maximality of the chain C. Hence C consists of consecutive edges
whence G R is a connected graph. □

However, property (CG) is much too strong for our purposes: Setting x = a makes the condition in (CG)
trivial, i.e., the axiom reduces to “R(a, z) ⊆ R(a, y) if and only if z ∈ R(a, y)”. Since R(a, z) ⊆ R(a, y) implies
z ∈ R(a, y) we are simply left with axiom (B2), i.e., (CG) implies (B2). As we shall see below, however, string
crossover in general does not satisfy (B2) and thus (CG) cannot not hold in general. Similarly, we cannot use
Lemma 1 of [22], which states that G R is connected whenever R is a transit function satisfying (B1) and (B2).

Allowing conditions not only on R but also on its closure R̂ we can make use of the fact that G R = G R̂ . Since
R̂ satisfies the monotonicity axion (M) by construction, (B2) is also satisfied. Thus RG is connected if at least one
of the following two conditions is satisfied: (i) R̂ satisfies (B1), or (ii) R̂ satisfies

(CG’) x ∈ R̂(a, z) and z ∈ R̂(a, y) if and only if z ∈ R̂(x, y)

The latter is equivalent to (CG) whenever R satisfies (M). To see this observe that R(a, x) ⊆ R(a, y) implies
x ∈ R(a, y) and by (M) R(x, y) ⊆ R(a, y).

So far, we lack a condition for the connectedness of G R that can be expressed by first order logic in terms of R
alone.

3. Basic properties of k-point crossover

We first show that the underlying graphs of k-point crossover transit functions are Hamming graphs.

Lemma 3.1. G Rk =
∏n

i=1 Kai for all 1 ≤ k ≤ n − 1.

Proof. Since R j (x, y) ⊆ Rk(x, y) for j ≤ k by definition, it suffices to consider R1. By definition, R1(x, y) = {x, y}

if and only if x and y differ in a single coordinate, i.e., for which d(x, y) = 1, i.e., x and y are adjacent in
∏n

i=1 Kai .
Obviously, Rk(x, y) = R1(x, y) in this case. If there are two or more sequence positions that are different between
the parents, then the crossover operator can “cut” between them to produce and generate an off-spring different
from either parent so that |R1(x, y)| > 2. □

From Lemma 3.1 and Corollary 2.4 we immediately conclude that the k-point crossover transit function Rk

satisfies (A1), (A2’), (A3), and (A4).

Lemma 3.2. Let Rk be the k-point crossover function. Then R̂k(x, y) = IG Rk
(x, y) for all x, y ∈ X and all k ≥ 1.
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Proof. By construction z ∈ R̂k(x, y) agrees in each position with at least one of the parents, i.e., zi ∈ {xi , yi } for
1 ≤ i ≤ n, and thus R̂k(x, y) ⊆ IG R (x, y). Conversely, choose an arbitrary z ∈ IG(x, y). Find the first position k
in the coordinate representation in which z disagrees with x and form the recombinant y′

∈ R1(x, y) that agrees
with x for i < k and with y for all i ≥ k. Then form the x ′

∈ R1(x, y′) ⊆ R̂1(x, y) by recombining again after
position k. By construction, x ′ agrees with z at least for all i ≤ k, i.e., in at least one position more than x . Since
x ′

∈ R̂1(x, y) we can repeat the argument at most n time to find a sequence x (n)
∈ R̂1(x, y) that agrees with z in

all positions. Since R1(x, y) ⊆ Rk(x, y) for all k ≥ 1, we conclude that z ∈ R̂k(x, y). □

As an immediate corollary we have:

Corollary 3.3. k-point crossover is MP-geometric for all k ≥ 1.

MP-geometricity is a desirable property for crossover operators in general because it ensures that repeated
application eventually produces the entire geodesic interval of the underlying graph structure.

Lemma 3.2 also implies a negative answer to one of the questions posed in [11]: “Is the geodesic convexity
uniquely determined by the geodesic interval function I (u, v) of a connected graph?”. More precisely, Lemma 3.2
shows that the k-point crossover transit function Rk also generates the geodesic convexity and hence that the geodesic
convexity is not uniquely determined by the interval function I as the IG Rk

(x, y), being the interval in a hypercube,
is itself convex.

A trivial consequence of Lemma 3.2, furthermore, is the well known fact that the transit function of uniform
crossover Rn−1 is the interval function on the Hamming graph:

Corollary 3.4. Rn−1(x, y) = R̂n−1(x, y) = IG R (x, y) for all x, y ∈ X.

For small distances, k-point crossover also produces the full geodesic interval in a single step:

Lemma 3.5. Rk(x, y) = IG R (x, y) if and only if d(x, y) ≤ k + 1.

Proof. If d(x, y) ≤ k+1 we can place one cross-over cut between any two positions at which x and y differ. In this
way we obtain all possible recombinations, i.e., Rk(x, y) is a subhypercube of dimension k + 1 in the underlying
graph G R . Conversely if d(x, y) > k+1 then there exists a z ∈ IG R (x, y) such that z requires more than k cross-over
cuts between positions at which x and y, which completes the proof. □

Next, we observe that the transit sets of k-point crossover can be constructed recursively.

Theorem 3.6. Rk(u, v) =

⋃
z∈Rk−1(u,v)

[R1(u, z) ∪ R1(z, v)].

Proof. W.l.o.g. we can assume that u = 0 . . . 0 and v = 1 . . . 1. Let a ∈ Rk(u, v) and without loss of generality we
can assume that a ends with 0. Let a j denote the coordinate, with the last appearance of 1 in a. Let b be an element
with bi = ai for 1 ≤ i ≤ j and bi = 1 otherwise. It follows that b ∈ Rk−1(u, v) and moreover a ∈ R1(b, v). □

A key property in the theory of transit functions is the so-called Pasch axiom

(Pa) For p, a, b ∈ X , a′
∈ R(p, a) and b′

∈ R(p, b) implies that R(a′, b) ∩ R(b′, a) ̸= ∅.

Lemma 3.7. R1 satisfies the Pasch axiom (Pa).

Proof. Consider three arbitrary strings a, b, and p. Then a′
∈ R1(a, p) is a concatenation of a prefix of a with the

corresponding suffix of p, or vice versa. Each b′
∈ R1(b, p) has an analogous representation, leading to four cases

depending on whether p is a prefix or a suffix of a′ and b′, resp., see Fig. 3. In case 1, a′
∈ R1(b′, a) if a′ has a

shorter p-suffix than b′. Otherwise b′
∈ R1(a′, b). In case 2, a′ has a p-prefix up to k and b′ has a p-suffix starting

at l. If the two parts of p overlap, i.e., l ≤ k then (b1 . . . bl , pl+1 . . . pk, ak+1 . . . an) ∈ R1(b, a′) ∩ R1(a, b′). If k < l
then a common crossover product is obtained by recombining both b with a′ and a with b′ at position k. Case 3,
a′ has a p-suffix and b′ has a p-prefix, can be treated analogously. Case 4, in which p matches a prefix of both a′

and b′ can be treated as in case 1. In summary, thus R1(a′, b) ∩ R1(a, b′) ̸= ∅ for any choice of a′
∈ R1(a, p) and

b′
∈ R1(b, p), i.e., R1 satisfies (Pa). □
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Fig. 3. Sketch of the proof of Lemma 3.7. We distinguish 6 cases depending on how a’ and b′ are constructed in R1(a, p) and R1(b, p),
respectively. The red lines indicate the explicit construction of an element in R1(a, b′) ∩ R1(a′, b). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Theorem 3.8. Rk satisfies axiom (Pa) for all k ≥ 1.

Proof. For fixed a, b, p let a′
∈ Rk(a, p) and b′

∈ Rk(b, p). By Theorem 3.6 we have

Rk(a′, b) =

⋃
z∈Rk−1(a′,b)

[R1(a′, z) ∪ R1(z, b)] Rk(a, b′) =

⋃
y∈Rk−1(a,b′)

[R1(b′, y) ∪ R1(y, a)]

and hence
Rk(a′, b) ∩ Rk(a, b′) =⎛⎝ ⋃

z∈Rk−1(a′,b)

[R1(a′, z) ∪ R1(z, b)]

⎞⎠ ∩

⎛⎝ ⋃
y∈Rk−1(a,b′)

[R1(b′, y) ∪ R1(y, a)]

⎞⎠ =

⎛⎝⎛⎝ ⋃
z∈Rk−1(a′,b)

[R1(a′, z) ∪ R1(z, b)]

⎞⎠ ∩

⎛⎝ ⋃
y∈Rk−1(a,b′)

R1(b′, y)

⎞⎠⎞⎠ ∪

⎛⎝⎛⎝ ⋃
z∈Rk−1(a′,b)

[R1(a′, z) ∪ R1(z, b)]

⎞⎠ ∩

⎛⎝ ⋃
y∈Rk−1(a,b′)

R1(y, a)

⎞⎠⎞⎠
⊇

⋃
z∈Rk−1(a′,b)
y∈Rk−1(b′,a)

[R1(a′, z) ∩ R1(y, a)]

Since z = b ∈ Rk−1(a′, b) and y = b′
∈ Rk−1(a, b′) we conclude Rk(a′, b) ∩ Rk(a′, b) ⊇ R1(a′, b) ∩ R1(a, b′) ̸= ∅

by Lemma 3.7. □

The Pasch axiom (Pa) implies in particular (B3), as shown in [23]. Lemma 1 of [16] therefore implies that Rk

also satisfies

(C4) z ∈ R(x, y) implies R(x, z) ∩ R(z, y) = {z},

which in turn implies (B1).
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Furthermore, R̂ also satisfies (M) and therefore in particular (B2). As an immediate consequence we conclude
that R̂k is geometric in the sense of Nebeský. Note that this is not true for Rk itself since (B2) is violated for all
k < n−1 for all pairs of vertices with distance d(x, x̄) = n. Lemma 1 of [22], furthermore, implies that G R̂k

= G Rk

is connected since R̂k is a transit function satisfying (B1) and (B2).
The requirement that G is connected in Corollaries 2.2 and 2.4 can therefore be replaced also by requiring that

R̂ satisfies (Pa).
The main result of [24], see also [16], states that a geometric transit function R equals the interval function of

its underlying graph, R = IG R , if and only if R satisfies in addition the two axioms

(S1) |R(x, y)| = |R(z, w)| = 2, x ∈ R(y, w), and y, w ∈ R(x, z), implies z ∈ R(y, w).

(S2) |R(x, y)| = |R(y, w)| = 2, y ∈ R(x, y), w /∈ R(x, z), z /∈ R(y, w) implies y ∈ R(x, w).

Again we need (S1) and (S2) to hold for R̂ rather than R itself.

Lemma 3.9. The 1-point crossover operator R1 satisfies the (S1) axiom.

Proof. Let R1 be 1-point crossover operator. Since |R(u, x)| = |R(v, y)| = 2, it follows that u and x as well as v

and y differ in only a single coordinate. Writing u = (u1, u2, . . . , ui , ui+1, . . . , un) and assuming u ∈ R(x, y) we
must have either

(1) u = (u1, u2, . . . , ui , ui+1, . . . , un) = (x1, x2, . . . , xi , yi+1, . . . , yn), or

(2) u = (u1, u2, . . . , ui , ui+1, . . . , un) = (y1, y2, . . . , yi , xi+1, . . . , xn).

W.l.o.g., suppose u is of the form (1), therefore u1, u2, . . . , ui = x1, x2, . . . , xi and ui+1, . . . , un = yi+1, . . . , yn . Let
x ∈ R(u, v). Since u is of the form (1), we have u1, u2, . . . , ui = x1, x2, . . . , xi and xi+1, . . . , xn = vi+1, . . . , vn .
Let y ∈ R(u, v). since u is of the form (1), we have y1, y2, . . . , yi = v1, v2, . . . , vi and yi+1, . . . , yn = ui+1, . . . , un .
Hence v = (v1, v2, . . . , vi , vi+1, . . . , vn) can be written as v = (y1, y2, . . . , yi , xi+1, . . . , xn), which implies
v ∈ R(x, y). Thus the axiom (S1) follows. □

Lemma 3.10. The 1-point crossover operator R1 satisfies axiom (S2).

Proof. From |R(u, x)| = |R(v, y)| = 2, it follows that u and x differ in only one coordinate, say i , and v and y
differ in a single coordinate, say j . W.l.o.g., let i ≤ j . Since v /∈ R(x, y), y and v differ only in position j , we
conclude that

(*) x j , . . . , xn ̸= v j , . . . , vn .

From x ∈ R(u, v) and (*) we obtain x1, . . . , x j−1 = v1, . . . , v j−1 = y1, . . . , yi−1. Hence x j , . . . , xn = u j , . . . , un .
Therefore x = (x1, . . . , x j−1, x j , . . . , xn) = (y1, . . . , y j−1, u j , . . . , un). This implies x ∈ R(u, y) and axiom (S2)
follows. □

As shown in [16], the axiom

(MO) R(x, y) ∩ R(y, z) ∩ R(z, x) ̸= ∅

implies both (S1) and (S2).
On hypercubes, i.e., assuming an alphabet with just two letters, uniform crossover R = R̂k satisfies |R(x, y) ∩

R(y, z) ∩ R(z, x)| = 1. The unique median m = R(x, y) ∩ R(y, z) ∩ R(z, x) is defined coordinate-wise by majority
voting of xi , yi , zi ∈ {0, 1}, see [12]. On hypercubes, R̂k thus satisfy (MO). This argument fails, however, for general
Hamming graphs. The reason is that axiom (MO) fails for each position at which the three sequences x, y, z are
pairwise distinct: {0, 1} ∩ {1, 2} ∩ {2, 0} = ∅.

For z ∈ Rk(x, y) let I denote the set of indices 0 = i0 ≤ i1 ≤ i2 ≤ ik = n from Definition 1.1 such that z is
a k-point crossover offspring of x and y. If z is an offspring such that x is placed before y in the definition we
denote this by z = x ×I y and z = y ×I x otherwise.

Lemma 3.11. Let d(a, b) > k+1. If s = a×I b, t = a×I b and |I | = k, then s× j t /∈ Rk(a, b) and t × j s /∈ Rk(a, b)
holds for all j /∈ I .
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Proof. Since j /∈ I it follows that s × j t = (a ×I b) × j (b ×I a) and t × j s = (b ×I a) × j (a ×I b), we have
s × j t, t × j j ∈ Rk+1(a, b) \ Rk(a, b). □

Gitchoff et al. [10] conjectured that for each transit set Rk(x, y) there is a unique pair of parents from which it
is generated unless Rk(x, y) is a hypercube. We settle this conjecture affirmatively:

Theorem 3.12. If d(u, v), d(x, y) > k + 1 then Rk(u, v) = Rk(x, y) if and only if {u, v} = {x, y}.

Proof. The implication from right to left is trivial. For other direction we use Lemma 3.11. Assume, for
contradiction, that Rk(u, v) = Rk(x, y) and {u, v} ̸= {x, y}. Then x, y ∈ Rk(u, v) and u, v ∈ Rk(x, y). From
Rk(u, v) = Rk(x, y) it follows also that R̂k(u, v) = R̂k(x, y), which in turn implies d(u, v) = d(x, y). Therefore,
there exists a set of indices I , |I | = k, such that x = u ×I v and y = v×I u. From d(x, y) > k +1 and Lemma 3.11
we conclude that there exists j /∈ I such that x × j y /∈ Rk(u, v). Hence Rk(u, v) ̸= Rk(x, y). This contradiction
completes the proof of the theorem. □

For the special case k = 1, Theorem 3.12 for k = 1 implies the following statement.

(H3) For every x, y, u, v ∈ X , u ̸= v, x ̸= y, |R(x, y)| > 4, R(u, v) ⊆ R(x, y) implies that either R(u, v) = {u, v}

or {u, v} = {x, y}.

For x, y ∈ X with d(x, y) = t ≥ 3, the transit set R1(x, y) induces a cycle of size 2t , and hence the only other
transit sets that are included in R1(x, y) are singletons and edges.

4. Graph theoretical approach for k-point crossover operators

Transit sets R(x, y) inherit a natural graph structure as an induced subgraph of the underlying graph G R . In the
case of crossover operators and their corresponding transit sets Rk(x, y), the distance in the underlying graph plays
a crucial role in their characterization.

Recall that n-dimensional hypercubes are antipodal graphs, i.e., for any vertex v there is a unique antipodal
vertex v with d(v, v) = diam(G) = n, where diam(G) denotes the diameter of graph G. The vertex v is obtained
from v by reversing all coordinates.

Theorem 4.1. Rk(x, y) induces an antipodal graph such that x = y, y = x, and for each u ∈ Rk(x, y) of the form
u = x ×I y we have u = y ×I x.

Proof. The definition of Rk immediately implies that x and y are at the maximal distance from each other and
every other v ∈ Rk(x, y), v = x ×I y, has a unique vertex at maximal distance in Rk(x, y), that is v = y ×I x . □

Note that here v and v are antipodal in a subgraph Rk(x, y) and will not be antipodal in the underlying graph
G R , unless d(v, v) = diam(G R). This is not the only property inherited from hypercubes. We say that H is an
isometric subgraph of a graph G if for every pair of vertices u, v ∈ V (H ) the distance from G is preserved, i.e., if
dH (u, v) = dG(u, v). Isometric subgraphs of hypercubes are known as partial cubes [18,25]. It is shown in [10] (1)
that R1(x, y) induces C2t , a cycle of length 2t , where t = d(x, y), and (2) that dC2t (u, v) = dG R1

(u, v) holds for
every pair u, v ∈ R1(x, y). In other words R1(x, y) is a partial cube. Theorem 3.6 implies that this result holds in
general:

Corollary 4.2. The k-point crossover operator Rk induces a partial cube.

In particular, therefore, Rk always induces a connected subgraph of G R .
In the remainder of this section we consider only the binary case.

Definition 4.1. Let R be a transit function R on a set X . Then we set uv ∥ xy if and only if v, x ∈ R(u, y) and
u, y ∈ R(v, x).

The binary relation ∥ was introduced in [26] in the context of a characterization of so called X -nets, a
structure from phylogenetic combinatorics that is intimately connected with partial cubes. Indeed, ∥ can be used to
characterize partial cubes [26]:
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Proposition 4.3. Let G be a graph and R = IG , then G is a partial cube if and only if the relation ∥ is an
equivalence relation on the set of its edges.

By the definition, the relation ∥ is reflexive and symmetric. Therefore it suffices to require that ∥ is a transitive
relation. Proposition 4.3 thus can be translated into the language of transit functions:

Theorem 4.4. Let R be a transit function on a set X. Then the underlying graph G R is partial cube if and only
if R satisfies:

(AX) for all a, b, c, d, e, f ∈ X, with |R(a, b)| = |R(c, d)| = |R(e, f )| = 2 and ab ∥ cd and cd ∥ e f it follows
that ab ∥ e f .

It is worth noting that the axiom (AX) can be also described purely in a transit sets notation as follows:

(AX’) for all a, b, c, d, e, f ∈ X , with |R(a, b)| = |R(c, d)| = |R(e, f )| = 2 and b, c ∈ R(a, d), a, d ∈ R(b, c),
d, e ∈ R(c, f ) and c, f ∈ R(d, e) it follows that b, e ∈ R(a, f ) and a, f ∈ R(b, e).

For a partial cube G, the equivalence classes of the relation ∥ are called cuts and we denote the set of all cuts
by C = {C1, C2, . . . , Cn}, where n is the dimension of the smallest hypercube into which G embeds isometrically.
Cuts form a minimal edge partition of the edge set in a partial cube with the property that removal of all edges
from a given cut results in a disconnected graph with exactly two connected components. These are called splits
[25,27].

Cuts of the partial cubes correspond to the coordinates in the corresponding isometric embedding into the
hypercube and they induce a binary labelling of the strings: for a cut Ci vertices from one part of the split
induced by Ci are labelled “0” in coordinate i , and vertices from the other part of the split are labelled “1”
in coordinate i . For any pair of parallel edges xy, uv in a partial cube the notation can be chosen such that
d(u, x) = d(v, y) = d(u, y) − 1 = d(v, x) − 1. The distance between any two vertices in a partial cube therefore
can be computed as the Hamming distance between the corresponding binary labellings, which in turn corresponds
to the number of cuts that separate the two vertices. In other words, any shortest path between two vertices in a
partial cube is determined by the cuts it traverses. Moreover, any shortest path traverses each cut at most once. We
refer to [18,25] for the details; there, the cuts are called Θ-classes.

Let us denote the cuts appearing in the partial cube R1(x, y) by C(x, y). We have |C(x, y)| = d(x, y). For any
pair of vertices x, y in a hypercube with d(x, y) = t we have t ! possible ways to choose a shortest path between
them, because each of the t ! possible orders in which the corresponding cuts that are traversed results in a distinct
path. Therefore there are also t ! ways to choose an isometric cycle through x and y. The definition of the 1-point
crossover operator, on the other hand, identifies a unique isometric cycle between x, y ∈ V (G R).

The binary labelling of vertices in a partial cube naturally induces a lexicographic ordering of vertices. Similarly,
by taking first the labelling of the minimal vertex and concatenating it with the labelling of the remaining vertex,
we can also lexicographically order the edges of a partial cube (Fig. 5). The idea can further be generalized to a
lexicographic ordering of all paths and cuts of a partial cube. The following result shows the 1-point crossover is
intimately related to this lexicographic order.

Theorem 4.5. Let x, y ∈ X = {0, 1}
n . Then R1(x, y) consist of all vertices appearing on lexicographically minimal

and maximal paths between x and y.

Proof. The statement follows immediately from the definition of the 1-point crossover operator. □

Problem 4.1. Is it true that Rk(x, y) consist of all vertices appearing on k!

2 pairs of first and last lexicographically
minimal and maximal paths between x and y?

For x, y ∈ X{0, 1}
n and any shortest path between them, there is exactly one path along which the cuts appear

in the reverse order. Consider any u ∈ R1(x, y) \ {x, y}. There is exactly one shortest path between u and x in
R1(x, y). For k > 1 and d(x, y) = t both x and y have exactly t neighbours in Rk(x, y). Moreover as shown above,
see Fig. 4, for u ∈ Rk(x, y), it may be the case that Rk(x, u) = R̂k(x, u) ⊆ Rk(x, y). Hence the lexicograpic order
of cuts does not uniquely determine a shortest path in Rk(u, x). The structure of Rk(u, v) hence is much richer and
calls for more “dimensions”.
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Fig. 4. R2(0000, 1111) together with coloured cuts. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Problem 4.2. Compute the size of cuts for Rk , i.e., the number of edges belonging to the common cut.

The degree sequence of the graphs induced by 1-point crossover and uniform crossover operators are monotone.
In the first case all values are equal to 2, and in the second case they equal the length of the string n.

Problem 4.3. Let d(a, b) = t > k + 1 > 2. Determine degree sequences of the graphs induced by Rk(a, b).

Lemma 4.6. Let a, b ∈ X = {0, 1}
n and k > 1. Then the maximum and the minimum degree of a graph induced

by Rk(a, b) equal n and k + 1, respectively.

Proof. Clearly the graph induced by R2(a, b) includes all neighbours of x and y in {0, 1}
n , hence the maximum

degree of a graph induced by R2(a, b), and consequently of graphs induced by Rk(a, b), for k > 2, is n. W.l.o.g., let
a = 0 . . . 0 and b = 1 . . . 1. Then Rk(a, b) consist of all binary strings with less than k +1 blocks of consecutive 0’s
or 1’s. Hence the minimum degree in a graph induced by Rk(a, b) is attained by vertex corresponding to a binary
string consisting of exactly k different blocks of consecutive 0’s or 1’s, and they have exactly k + 1 neighbours in
a graph induced by Rk(a, b). □

A solution of Problem 4.3 could help solve

Problem 4.4. Does Rk induce a k-connected graph?

For an axiomatic characterization of R1 in terms of transit functions axioms it is easy to translate graph theoretic
properties related to the fact that R1(x, y) induces an isometric cycle in {0, 1}

n in the language of transit functions.
In addition, however, it would also be necessary to express a consistent ordering of the cuts that appear in the
isometric cycles in terms of transit function. While this appears possible, it seems to be cumbersome and does not
promise additional insights into the structure of the transit sets. Hence we do not pursue this issue further.

5. Combinatorial properties of recombination sets

Since the monotonicity axiom (M) fails for k-point crossover with k < n −1, an alternative axiom was proposed
in [10]:
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Fig. 5. R1(000, 111) in K 3
2 is represented with black vertices and fat edges. Lexicographic ordering of the vertices of K 3

2 : starting at 000
bottom-up and then in each level from left to right; labelling of the edges corresponds to the induced lexicographic ordering of cuts.

(GW3) For all x, y ∈ X and all u, v ∈ R(x, y) holds |R(u, v)| ≤ |R(x, y)|.

stipulating monotonicity in size. This is proper relaxation of (M), which obviously (M) implies (GW3). In order to
derive explicit expressions for |Rk(x, y)| we note that, for given vertices x and y, the hypercube can be relabelled
in such a way that x becomes the all-zero string and y is a 01-string with 1’s at exactly the positions where x and y
differ. Thus the size of the recombination sets |Rk(x, y)| =: rk(t) depends only on the order k of the recombination
operator and the Hamming distance t := d(x, y). In the following we write

Φh(n) :=

h∑
i=0

(
n
i

)
. (2)

In order to compute rk(t), we have to distinguish the case of small and large Hamming distances.

Theorem 5.1. Let 1 ≤ k < t . Then

rk(t) =

{
2t if t ≤ k
2Φk(t − 1) if t > k

(3)

Proof. Consider two strings x and y. From [10] we know that |R1(x, y)| = 2t . For all children of x and y that are
obtained by i-point crossover, 1 ≤ i ≤ k with exactly i cuts, we have i possibilities for choosing the cuts along
t − 1 positions. This amounts to a total of

(t−1
i

)
possibilities in 2 different choices for the ordering of parents. If

t ≤ k cuts may be placed simultaneously between any two positions in which x and y differ, i.e., i takes values
from 0 to t − 1. Thus rk(t) = 2

∑t−1
i=0

(t−1
i

)
= 2Φt−1(t − 1) = 2 · 2t−1

= 2t . For t > k the number of possible cuts
is limited by k and hence rk(t) = 2Φk(t − 1). □

Parts of this result were already observed by [10]. In particular, r1(t) = 2t for t > 1, r2(t) = t2
− t +2 for t > 2,

rk(k + 1) = 2k+1, and rk(k + 2) = 2k+1
− 2.
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The latter equation shows that Rk−1(x, y) for d(x, y) = k + 1 misses exactly two points compared to Rk(x, y),
i.e., Rk(x, y) \ Rk−1(x, y) = {a, b}. Thus we can conclude immediately that a = x ×I y, b = y ×I x with |I | = k.
Since every x, y, x ̸= y, has a unique a, b with the above property, we obtain another simpler proof of Theorem 3.12.

From rk(t) = 2t for t ≤ k + 1 and the fact that R̂k(x, y) is a hypercube K t
2 of dimension t for d(x, y) = t we

immediately conclude that Rk(x, y) is also a hypercube for t ≤ k + 1.
Let G be partial cube and let H be a graph obtained by contracting some of the cuts of G, i.e. by forgetting

some of the coordinates in binary labelling of vertices. If H is isomorphic to some hypercube, then we say that H
is a cube minor of G.

Lemma 5.2. Consider Rk(x, y) as an induced subgraph of the boolean hypercube K n
2 , and suppose d(x, y) ≥ k+1.

Then the largest cube minors of Rk(x, y) are isomorphic to K k+1
2 .

Proof. This is an immediate consequence of Lemma 3.5 and Theorem 3.6. □

The Vapnik–Chervonenkis dimension (or VC-dimension) measures the complexity of set systems. Originally
introduced in learning theory [28], it has found numerous applications e.g. in statistics, combinatorics and
computational geometry, see [29]. Consider a base set X and family H ⊆ 2X . A set C ⊆ X is shattered by
H if {Y ∩ C |Y ∈ H } = 2C . The V C-dimension of H is the largest integer dV C such that there is a set C of
cardinality dV C that is shattered by H . For H = ∅, dV C = −1 by definition.

Clearly, X is shattered by H = 2X , hence the VC-dimension of the Boolean hypercube {0, 1}
d is d . Now consider

an even cycle C2t of length 2t , isometrically embedded into t dimensional hypercube. It is not hard to check that
the VC-dimension of C2t is 2 for any t ≥ 2. More generally, the VC-dimension of a partial cube G, with d cuts,
equals the dimension of the largest cube-minor in G, because this is the largest cardinality of a set of coordinates
that can be shattered by the set of all d of cuts of G.

Theorem 5.3. The VC-dimension of Rk(x, y) equals k + 1 whenever d(x, y) > k. Otherwise the VC-dimension of
Rk(x, y) equals d(x, y).

Proof. If d(x, y) ≤ k then Rk(x, y) induces graph isomorphic to d-dimensional hypercube, where d = d(x, y). Let
d = d(x, y). If d > k then we need to contract d − k − 1 cuts (ignore the corresponding coordinates) to obtain a
cube minor of dimension k + 1. □

6. Concluding remarks

Crossover operators are a key ingredient in the construction of algorithms in Evolutionary and Genetic
Programming. Their purpose is to construct offspring that are a “mixture” of the two parental genotypes, an idea
that is captured well by the concept of transit functions. In this contribution we have investigated in detail the
transit sets of homologous crossover operators for strings of fixed length and their combinatorial, graph theoretic,
and topological properties. As shown by [10] 1-point crossover operators correspond to circles, that is, rather simple
2-dimensional objects. For k > 1 we have shown that k-point crossover operators are of more complex nature and
correspond to higher dimensional objects, which is appropriately measured by the VC-dimension. The connection
of k-point crossover on binary strings with oriented matroids and pseudosphere arrangements will be explored in a
forthcoming contribution.

The results presented here suggest to consider transit sets of recombination operators for state spaces other than
strings. Natural candidates are many crossover operators for permutation problems. A subset of these was compared
e.g. in [30,31] but very little is known about the algebraic, combinatorial, and topological properties. Interestingly,
the 1-point crossover operator R1 satisfies all axioms except (B2) of the axioms characterizing the interval function
of an arbitrary connected graph. Nevertheless, there are striking differences even though both functions induce the
same convexity as noted in Lemma 3.2.

Finally, recombination operators influence in a critical manner the way how genetic information is passed down
through the generalizations in diploid populations. The corresponding nonassociative algebraic structures so far
have been studied mostly as generalizations of Mendel’s laws [32,33], see also [34,35]. We suspect that a better
understanding of the structure of recombination operators will also be of interest in this context.
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