University of Kerala First Degree Programme in Mathematics Model Question Paper

 Semester I

 Semester I

 MM 1141: Methods of Mathematics

 MM 1141: Methods of Mathematics (2023 Admission onwards)

 (2023 Admission onwards)}

Time: 3 Hours
Max. Marks: 80

Section - I
All ten questions are compulsory. Each question carries 1 mark.

1. Whenever we say f is increasing on an interval?
2. If $f^{\prime \prime}(a)$ exists and f has an inflection point at $x=a$, then $f^{\prime \prime}(a)=\ldots$.
3. Assume that f is differentiable everywhere. Determine whether the statement is true or false. If f is decreasing on $[0,2]$, then $f(0)>$ $f(1)>f(2)$.
4. If $f^{\prime \prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)>0$, then f has a \ldots at x_{0}
5. If f has an absolute extremum on an open interval (a, b), then it must occur at a \ldots point of f.

6 . What is meant by a statement?
7. Write the antecedent and the consequent of the following sentence: If it stops raining by Saturday, then I will go to the football game.
8. Write the well ordering principle.
9. State true or false: There are infinitely many primes.
10. If $(a, b)=1=(a, c)$, then $(a, b c)=\ldots$.

Answer any eight questions. Each question carries 2 marks.
11. Suppose that $f(x)$ has derivative $f^{\prime}(x)=(x-4)^{2} e^{-x / 2}$. Then $f^{\prime \prime}(x)=$ $-\frac{1}{2}(x-4)(x-8) e^{-x / 2}$. The function f is increasing on the interval(s)
12. Let $y=\sqrt{x}$. Find formulas for Δy and $d y$.
13. Find the intervals on which $f(x)=x^{2}-4 x+3$ is increasing and the intervals on which it is decreasing.
14. Let $s(t)=t^{3}-6 t^{2}$ be the position function of a particle moving along an s-axis, where s is in meters and t is in seconds. Find the acceleration function $a(t)$.
15. State Rolle's Theorem.
16. Find all critical points of $f(x)=x^{3}-3 x+1$.
17. Whenever we say a function f is concave up? concave down?
18. Write an example of a biconditional statement.
19. Construct a truth table for the compound statement

$$
\sim(p \wedge q) \Leftrightarrow[(\sim p) \vee(\sim q)] .
$$

20. Write division algorithm for integers.
21. Write six consecutive integers that are composites.
22. Find the canonical decomposition of 2520 .
Section - III

Answer any six questions. Each question carries 4 marks.
23. Find all relative extrema of $f(x)=3 x^{5 / 3}-15 x^{2 / 3}$.
24. Determine by inspection whether $p(x)=3 x^{4}+4 x^{3}$ has any absolute extrema. If so, find them and state where they occur.
25. Show that the function $f(x)=\frac{1}{4} x^{3}+1$ satisfies the hypotheses of the Mean-Value Theorem over the interval $[0,2]$ and find all values of c in the interval $(0,2)$ at which the tangent line to the graph of f is parallel to the secant line joining the points $(0, f(0))$ and $(2, f(2))$.
26. A garden is to be laid out in a rectangular area and protected by a chicken wire fence. What is the largest possible area of the garden if only 100 running feet of chicken wire is available for the fence?
27. Prove that any postage of $n(\geq 2)$ cents can be made with two- and three-cent stamps.
28. Find the number of positive integers ≤ 3000 and divisible by 3,5 , or 7.
29. Show that every integer $n \geq 2$ has a prime factor.
30. Write the negation of each of the following
(a) There exists a positive number x such that $x^{2}=5$.
(b) For every positive number M, there is a positive number N such that $N<1 / M$.
(c) If $n \geq N$, then $\left|f_{n}(x)-f(x)\right| \leq 3$ for all x in A.
(d) No positive number x satisfies the equation $f(x)=5$.
31. (a) Use a truth table to verify that $p \Rightarrow q$ and $\sim q \Rightarrow \sim p$ are logically equivalent.
(b) Is $p \Rightarrow q$ logically equivalent to $q \Rightarrow p$?

Section - IV

Answer any two questions. Each question carries 15 marks.
32. (a) The diameter of a polyurethane sphere is measured with percentage error within $\pm 0.4 \%$. Estimate the percentage error in the calculated volume of the sphere.
(b) Use the first and second derivatives of $f(x)=x^{3}-3 x^{2}+1$ to determine the intervals on which f is increasing, decreasing, concave up, and concave down. Locate all inflection points.
33. (a) An open box is to be made from a 16 -inch by 30 -inch piece of cardboard by cutting out squares of equal size from the four corners and bending up the sides. What size should the squares be to obtain a box with the largest volume?
(b) You are driving on a straight highway on which the speed limit is $55 \mathrm{mi} / \mathrm{h}$. At 8:05 a.m. a police car clocks your velocity at 50 mi / h and at 8:10 a.m. a second police car posted 5 mi down the road clocks your velocity at $55 \mathrm{mi} / \mathrm{h}$. Explain why the police have a right to charge you with a speeding violation.
34. (a) Let a be any integer and b a positive integer. Show that there exist unique integers q and r such that $a=b \cdot q+r$ where $0 \leq r<b$.
(b) Using Euclidean algorithm evaluate $(4076,1024)$.
35. Explain any three proof techniques with one example for each.

