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CHAPTER 1

INTRODUCTION

A time series is a sequence of measurements of some variable collected over a time

period. Most often measurements are made at regular time intervals. Time series data often arise

when monitoring the industrial processes or tracking corporate business metrics. One difference

from standard linear regression is that the data are not necessarily independent and not

necessarily identically distributed. One defining characteristic of time series is that this is a list

of observations where the ordering matters. Ordering is very important because there is

dependency and changing the order could change the meaning of the data.

Alternately, a time series is a set of observations generated sequentially in time. A

statistical phenomenon that evolves in time according to probabilistic laws is called a stochastic

process. So by analyzing a time series one can realize a stochastic process.

1.1 Stationary Stochastic Process
A class of stochastic process is called stationary if the process is in a state of statistical

equilibrium. It is called strictly stationary if its properties are unaffected by a change of time

origin. Thus the joint distribution of any set of observations must be unaffected by shifting all the

times of observation forward and backward by an integer.

1.1.1 Autocorrelation Function
The stationary assumption implies that the joint probability distribution P(zt1, zt2) is same

for all times (t1, t2). The covariance between zt and zt+k separated by k intervals of time is called

autocovariance at lag k and is defined by

( , ) [( )( )]k t t k t t kCov z z E z z       (1.1)

Similarly autocorrelation at lag k is



2

2 2

[( )( )]
( ) E( )

t t k
k

t t k

E z z
E z z

 
 





 

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For a stationary process, autocorrelation is

0

k
k


 (1.3)

Both autocovariance matrix and autocorrelation matrix are positive definite for any

stationary process. In particular for n=2, the conditions satisfied by the autocorrelations of a

stationary process is

2
2 1

2
1

1 1
1
 



  
 (1.4)

The autocorrelations considered as a function of k are referred to as the autocorrelation

function (ACF) or correlogram. The ACF plays a major role in modelling the dependencies

among observations of a stationary stochastic process, since ACF characterizes the process

together with the process mean E(z) and variance 0 equal to V(z).

The correlation between two random variables is often due only to the fact that both

variables are correlated with the same third variable. In the time series context, a large portion of

the correlation between zt and zt-k can be due to the correlation of the intermittent variables zt-1,

zt-2,…, zt-k-1. To adjust for this correlation, one can calculate partial autocorrelations.

1.2 Stochastic Difference Equation Models
The models we consider in this section are based on the observation by Yule (1921,

1927), where he noticed that a time series in which successive values are autocorrelated can be

represented as a linear combination of a sequence of uncorrelated random variables. This

representation was later confirmed by Wold (1938), who showed that every weakly stationary

non-deterministic stochastic process (zt-µ) can be written as a linear combination of a sequence

of uncorrelated random variables. The linear combination is given by
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1 1 0
0

.... , 1.t t t j t j
j

z a a a where   


 


      (1.5)

The random variables at are a sequence of uncorrelated random variables from a fixed

distribution with mean E(at) = 0, variance V(at) = E(at
2) = σ2 and Cov(at, at-k) = E(at, at-k) = 0 for

all k ≠ 0. Such a sequence is usually referred to as a white-noise process. Occasionally we will

also call these random variables as random shocks. The ψj weights are the coefficients in this

linear combination and their number can be either finite or infinite.

1.2.1 Autoregressive Process
In autoregressive process of order p [AR(p)] model, treat zt, the deviation from the mean

at time t as being regressed on the p previous deviations zt-1, zt-2,…, zt-p.

1 1 2 2 ...t t t p t p tz z z z a         (1.6)

( ) ( )t tB z B a  (1.7)

where 2
1 2( ) 1 ... p

pB B B B        and B is the backshift operator, B(zt)=zt-1

1.2.2 Moving Average Process
Another class of stochastic model is obtained by specifying only ψ weights.

1 1 2 2 1 1 2 2... ...t t t p t p t t t q t qz z z z a a a a                   (1.8)

( )t tz B a , (1.9)

where 2
1 2( ) 1 ... q

qB B B B       

1.2.3 Autoregressive Moving Average Process
The Autoregressive Moving Average model is

1 1 2 2 1 1 2 2... ...t t t p t p t t t q t qz z z z a a a a                   (1.10)

( ) ( )t tB z B a  (1.11)
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1.3 Non-Stationary Process : ARIMA
Let zt be non-stationary series, but it should be transformed into a stationary process by

considering relevant differences, i.e., (1-B)dzt. Then the autoregressive integrated moving

average model of order (p, d, q) denoted by ARIMA(p, d, q) is defined as

( )(1 ) ( )d
t tB B z B a   (1.12)

The model is called “integrated”, since zt can be thought of as the summation of a

stationary series.

1.4 Financial Time Series
Financial time series analysis is concerned with the theory and practice of asset valuation

over time. It is a highly empirical discipline, but like other scientific fields theory forms the

foundation for making inference. Volatility is an important factor in options trading. Here

volatility means the conditional standard deviation of the underlying asset return. Financial

markets are an important channel in the transmission mechanism of monetary policy.

Developments in financial markets reflect the expectations about future economic and financial

developments which might have an influence on monetary policy decisions and vice-versa. Two

empirical characteristics commonly found in financial return series are the presence of high

excess kurtosis and persistence in volatility. These characteristics led to the development of the

ARCH model of Engle (1982) and GARCH model of Bollerslev (1986). Many authors have

argued that the high persistence in volatility of empirical asset returns is due to sudden shocks to

the series associated with extraordinary economic events such as financial crises, recessions and

changes in policy. These shocks may well be described by structural breaks in the GARCH

model governing the conditional volatility of the return series. A special feature of stock

volatility is that it is not directly observable.
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1.4.1 The ARCH Model
The first model that provides a systematic framework for volatility modeling is the ARCH

model of Engle (1982). The basic idea of ARCH models is that (a) the shock of an asset return is

serially uncorrelated, but dependent and (b) the dependence of at can be described by a simple

quadratic function of its lagged values. Specifically, an ARCH (m) model assumes that

at=σtϵt, where 2 2 2 2
0 1 1 2 2 ...t t t m t ma a a           (1.13)

where {ϵt} is a sequence of independent and identically distributed random variables with mean

zero and variance 1, α0 >0 and αi ≥ 0 for i >0. The coefficients αi must satisfy some regularity

conditions to ensure that the unconditional variance of it is finite. In practice, ϵt is often assumed

to follow the standard normal or a standardized student-t or a generalized error distribution.

1.4.2 The GARCH Model
Although the ARCH model is simple, it often requires many parameters to adequately

describe the volatility process of an asset return. Bollerslev (1986) proposes a useful extension to

ARCH model known as the generalized ARCH (GARCH) model. For a log return series rt, let at

= rt - μt be the innovation at time t. Then it follows a GARCH (m, s) model if

at=σtϵt, where 2 2 2 2 2 2 2
0 1 1 2 2 1 1 2 2... ...t t t m t m t t s t sa a a                        (1.14)

where again {ϵt} is a sequence of iid random variables with mean =0 and variance =1, α0 >0, αi ≥

0, βj ≥ 0, and
max( , )

1
( ) 1

m s

i i
i
 



  . Here it is understood that αi = 0 for i >m and βj = 0 for j >s.

The latter constraint on αi+βi implies that the unconditional variance of at is finite, whereas its

conditional variance 2
t evolves over time. As before, ϵt is often assumed to follow a standard

normal or standardized student-t distribution or generalized error distribution. Equation (1.14)

reduces to a pure ARCH(m) model if s = 0. The αi and βj are referred to as ARCH and GARCH

parameters, respectively.
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1.5 Objective of the Work
As a market index, we will use a long time-series of returns on the BSE sensex, a widely

used market index on the BSE. The dataset has 1000 observations of daily returns over the

period from July 1997 to July 2012 was used to find strong evidence of heteroscedasticity in

weekly and monthly returns. In the present work, the dataset is fitted with appropriate

conditional model and proposed a test method to determine the regime shift in the level of

unconditional variance of the data. The unobserved volatility, moments and parameters of the

data set were estimated by analyzing the effects of structural changes on the observed data series.

A test statistic for testing changes in individual parameters of the volatility equation of GARCH

model using estimation function approach was carried out.
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CHAPTER 2

INTERVENTION ANALYSIS

Time series observations may sometimes be affected by unusual events, disturbances or

errors that create spurious effects in the series and result in extraordinary patterns in the

observations that are not in accord with most observations in the time series. Such unusual

observations may be referred to as outliers. They may be the result of unusual external events

such as strikes, sudden political or economic changes, sudden changes in a physical system or

simply due to recording or gross errors in measurement. The presence of such outliers in time

series can have substantial effects on the behaviour of sample autocorrelations, partial

autocorrelations, estimates of ARMA model parameters, forecasting and can even affect the

specification of the model.

Intervention analysis, introduced by Box and Tiao (1975), provides a framework for

assessing the effect of an intervention on a time series under study. It is assumed that the

intervention affects the process by changing the mean function or trend of a time series.

Interventions can be natural or man-made. For example, increase of the speed limit from 65

miles per hour to 70 miles per hour on an interstate highway. This may make driving on the

highway more dangerous. On the other hand, drivers may stay on the highway for a shorter

length of time because of the faster speed, so the net effect of the increased speed limit change is

unclear. The effect of increase in speed limit may be studied by analyzing the mean function of

some accident time series data. For example, the quarterly number of fatal car accidents on some

segment of an interstate highway.

2.1 Outlier in Time Series
Outliers refer to typical observations that may arise because of measurement and/or
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copying errors or because of abrupt, short-term changes in the underlying process. For time

series, two kinds of outliers can be distinguished, namely additive outliers (AO) and innovative

outliers (IO). These two kinds of outliers are often abbreviated as AO and IO, respectively.

2.1.1 The Model
Abraham and Box (1979), Fox (1972) and Martin (1980) discussed two characterizations

of outliers in the context of time series models:

1. Aberrant observation model (AO: additive outlier):

yt =zt + ω It(k);  Φ(B) zt =Θ(B) at (2.1)

2. Aberrant innovation model (IO: innovational outlier):

yt =zt + ω Φ-1(B) Θ(B)  It(k);  Φ(B) zt =Θ(B) at (2.2)

Here yt denotes the observed time series, zt the underlying process without the impact of

outliers and It(k) = 1 if t = k and zero otherwise. In the first model, only the level of the k th

observation is affected. In the second model, the outlier affects the shock at time k, which in turn

influences zk, zk+1,….

2.1.2 Estimates of Outlier Effects
Let us assume that the time T of the intervention and the time series parameters φ and ѳ

are known. Let  et = Π(B)yt; Π(B)= Φ(B) Θ-1(B). Then,

For AO                  et =at + ω x1t (2.3)

IO et =at + ω x2t (2.4)

where x1t= Π(B) It(T) and x2t= It(T).

The least squares estimates of the intervention impact ω and their variances can be obtained as

follows:

for AO
1

t 1
ao 2

e
Ŵ  =

t

tx
x




(2.5)
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1

2

ao 2
ˆV(W ) =

t
x



(2.6)

for IO
2

t 2
io 2

e
Ŵ  =

t

t
T

x
e

x



(2.7)

2

2
2

io 2
ˆV(W ) =

t
x
 


(2.8)

The notation reflects the fact that the estimates depend upon T.

In the AO model, ŵao is a linear combination of the shocks future to T and its variance

can be much smaller than σ2. In the IO model, ŵio is the residual at T with variance σ2.

Significance tests for outliers can be performed based on the standardized estimates

ao
ˆ aow


 ; io
ˆ iow


 ; 2
0 i

n Twhere  , for AO and IO types respectively. Under the null

hypothesis that ŵ =0, both statistics will have standard normal distribution.

In practice, T as well as the time series parameters are unknown and have to be replaced

by the estimates.

2.1.3 Iterative Procedure for Outlier Detection
In practice, the time point T of a possible outlier as well as the model parameters are

unknown. To address the problem of detection of outliers at unknown times, iterative procedures

that are relatively convenient computationally had been proposed by Chang, Tiao and Chen to

identify and adjust for  the effects of outliers. It consists of specification, estimation, detection

and removal cycles to build a time series model in the presence of exogenous disturbances. In

each iteration, the maximum of a given test statistic is selected as the candidate for that type of

disturbance and the grand maximum across the tests is identified as the most likely exogenous

disturbance. This grand maximum is then compared with a pre-specified critical value so that the

existence of an exogenous disturbance can be judged. It consists of the following steps:
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Step 1: Specify an ARMA model for the observed series Yt and obtain parameter estimates and

residuals of the specified model.

Step 2: The statistics ao and io are computed for each time t= 1, 2,…, n as well as

 max max( , ) ,T t ao io   where T denotes the time when this maximum occurs.

Step 3: The possibility of an outlier type IO identified at time T if ,T io c   where c is a

pre-specified value. If ,T ao c   the possibility of an AO outlier is identified.

Step 4: The effect of IO can be eliminated from the residuals by defining ˆ 0t t ioe e w   at T.

The effect of AO can be removed from the residuals by defining ˆt t ao t Te e w    for t ≥ T. In

either case, a new estimate 2ˆa is computed from the modified residuals te .

Step 5: Repeat the above procedure until all the outliers are identified.

2.1.4 Illustrative Examples
As an example, the value of unfilled orders of radio and TV (UNFTV) from the U.S.

Bureau of the Census is reanalysed. This is a monthly series for the period from January 1958 to

October 1980 giving a total of 274 data points. This data set was used by Martin, Samarov and

Vandaele (1983) to demonstrate the effectiveness of their approximate conditional mean (ACM)

type robust filter model and Tsay (1988) used to describe the method of detection of different

types of outliers. Figure 2.1 plots the logged series Yt and first differenced series Xt = (1-B)Yt. It

is clear from the differenced series plot of figure 2.1 that the series has changing variance.

Following the proposed procedure, a tentative model specification for Xt was first

performed and the multiplicative seasonal IMA (0, 0, 1) x (0, 1, 1), model appears to be

reasonable. This is also the model used by Martin et al. Table 2.1 summarizes the detection

results of the procedure.  A change in the model at t = 224 was detected with a variance ratio of

5.608. Figure 2.2 plots the adjusted series Xt*. The series now appears to be stable. Some

outlying observations, however are present. Procedure described in section 2.1.3 was then
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applied to Xt*. Table 2.2 gives the results of outlier detection. No level change, permanent or

transient was detected. There are, however, two innovational outliers at times t = 125 and 256,

respectively. An additive outlier appears at time t = 77 if the critical value is reduced to 3.0.

Figure 2.3 shows the residual plot the outlier-adjusted series zt
*.

Figure 2.1: Plots of logged UNFTV (a) Original series and (b) First differenced series.
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Table 2.1: Summary of variance detection of UNFTV series.

Iteration
Parameter Estimates

Variance RatioΘ1 Θ12
1 0.3735 0.7535

5.6082 0.2313 0.8739

If the variance change at t = 224 was ignored, then the procedure described in section

2.1.3 would identify more than 15 outliers or level changes for the data. On the other hand, when

one takes into account of the variance change, there are only two outliers left. Thus, ignoring the

variance change can be troublesome. Second, the final parameter estimates given in Table 2.2 are

different from those obtained by the ACM-type robust filter model of Martin et al. (1983), who

used the original data instead of the logged series. The seasonal MA(1, 2) parameter estimates

are close but the MA(1) coefficients are different. The MA(1) estimate in Table 2.2 is significant.

As a final note, when the original data were used, procedure detected two variance changes, one

at t= 44 and the other at t = 243 and also identified three IO’s at t = 235, 125 and 248.

The adjusted series has MA coefficients θ1 = 0.2343 (0.0602) and θ12 = 0.8552 (0.0358).

Figure 2.2: Plot of first differenced log UNFTV series after variance change is adjusted.
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Table 2.2 Summary of outlier detection of UNFTV series.
Iteration MA Parameters Type Time Magnitude

1 12
1 0.2323 0.8739 IO 125 0.3815
2 0.2071 0.8556 IO 256 -0.2671
3 0.1991 0.8600 Insignificant

Figure 2.3: Residual plot of logged UNFTV series after disturbances removed.

2.2 Outliers in Financial Time Series
Outliers are aberrant observations that are away from the rest of the data. They can be

caused by recording errors or unusual events such as changes in economic policies, wars,

disasters, financial crises and so on. They are also likely to occur if errors have fat-tailed

distributions as in the case of financial time series. These observations may take several forms in

time series. The first and most usually studied is the additive outlier (AO), which only affects a

single observation. In contrast, an innovative outlier (IO) affects several observations. Balke and

Fomby (1994) found that many of the detected outliers in financial time series are IO’s,

especially for data at a high frequency.
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2.2.1 The Model
Charles and Darné (2005) extended the additive-outlier detection method in GARCH

models developed by Franses and Ghijsels (1999) to innovative outliers, using the Chen and Liu

(1993) approach.

Consider the returns series et, which is defined by et =log pt - log pt−1, where pt is the

observed price at time t and consider the GARCH(1,1) model

2
0 1 1 1 1

(0, )
(0,1)

t t t

t t

t

t t t

z

z h
N h
iid N

h h




    



  




(2.9)

0 1 1 1 10, 0, 0 1
where

and        

The GARCH(1, 1) model can be rewritten as an ARMA(1, 1) model for et
2.

 2 2 2
0 1 1 1 1 -1- , ,t t t t t t tv v where v h            (2.10)

This analogy of the GARCH model with an ARMA model allows one to directly adapt

the method of Chen and Liu (1993) to detect and correct AO’s and IO’s in GARCH models.

Specifically, suppose that instead of the true series et one observes the series et, which is defined

as 2 2 ( ) ( ), 1,2.t t i i te B I with i     (2.11)

where It(τ) is the indicator function defined as It(τ) =1 if τ =T and zero otherwise where τ is the

date of outlier occurring, ωi is the magnitude of the outlier effect and ξi(B) represents their

dynamic pattern with

1
1 2 1 1 1( ) 1 AO, and ( ) (1 )(1 ( ) )B for B B B for IO          (2.12)

An AO is related to an exogenous change that directly affects the series and only its level

of the given observation at time t =T. An IO is possibly generated by an endogenous change in

the series and affects all the observations after time t through the memory of the process.
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The residuals ht of the observed series et
2 are given by

20

1

(B)e (B) ( ) ( ),
1t t t i i tv B I

B
     



   


1
1 1 1( ) (1 ( ) )(1 )B B B        (2.13)

The expression (2.13) can be interpreted as a regression model. Hence t i it tx v   . Outlier

detection is based on the maximum value of the standardized statistics of the outliers effects

with xit=0 for i=1, 2 and t<τ , xit=1 for i=1, 2 and t = τ , x1, τ +k=-πk (for AO) and x2,τ +k =0 (for IO)

for t >τ and k>0.






12 21
1 1

11 2 2
1 1 1

2
1

( )ˆ ( )( )

[( )( ) / ]( )

( )ˆ /

n

t
tv

n n n

t t t v t
t t t

t v
v

AO x

x x x

IO



  

 


 

   





  





   
 



  
  (2.14)

where 2
v denotes the estimated variance of the residual process.

2.2.2 Iterative Procedure

The outlier detection method for GARCH(1,1) models then consists of following steps:

1. Estimate a GARCH(1, 1) model for the observed series et and obtain estimates of the

conditional variance th and  2
t t te h   . (2.15)

2. Obtain estimates ˆi (i =1, 2) for all possible t =1, . . . , n, and compute  
max 1

max in
 

 
 . If the

value of the test statistic exceeds the critical value C, an outlier is detected at the observation

for which t̂ is maximized.

3. Replace et
2 with





*2 2
1

*2 2
2

: ,

: ,j j

AO e e

IO e e
 

 





 

 
with j > 0 (2.16)

where 1( ) (B)B   . The outlier-corrected series et* is defined as
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*
*2

*
*2

:
(e )

:
(e ) , j 0

t
t

t t

t
t

t t

e for t
AO e

sign e for t

e for t
IO e

sign e for t j









 

 

  

(2.17)

4. Return to step 1 to estimate a GARCH(1, 1) model for the series et* and repeat all steps until

no t̂ maximum test-statistic exceeds the critical value C.

A critical value C =10 is used, which considered a low-sensitivity value for small sample

size (Verhoeven and McAleer, 2000). This choice for C is based on simulation experiments

proposed by Franses and Van Dijk (2002). The authors simulate some percentiles of the

distribution of the t̂ maximum statistic under the null hypothesis that no outliers are present for

several values of ARCH and GARCH parameters and for two sample sizes (250 and 500). It is

seen that the value of C =10 is reasonably close to the 90th percentile of this distribution for any

parameter combinations.
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CHAPTER 3

SOME DIAGNOSTIC CHECKING MEASURES

Some statistics used in regression analysis are considered for detection of outliers in time

series. Approximations and asymptotic distributions of these statistics are derived. In this work, a

method is proposed for distinguishing an observational outlier from an innovational one.

Andrews and Pregibon (1980), Cook and Weisberg (1982), and Draper and John (1981)

discussed detection of outliers and influential points in regression models. Their approach was

basically to delete suspicious observations and to build a measure of the resulting change in the

features of the model such as the estimated parameter values and residuals.

3.1 Q - Statistics in Time Series

Let z, be a stationary AR process of order p [AR(p)],

(B) Zt ta  , (3.1)

where 2
1 2(B) 1 ... p

pB B B       

Given a set of observations z1, z2, . . . , zn, we can write

Z X a  (3.2)

where 1, 1,..., 1,...,' ( ..... ), ' ( ),a' (a a )p n p p nZ z z       and

1 1

1 2

1 2

. . . .
...

p p

p p

n n n p

z z z
z z z

X

z z z





  

 
 
 
 
 
  

Then the conditional least squares (CLS) estimate of φ is given by  1( ) 'X X X Z  (3.3)

the fitted values are   ( ' ) 'Z X X X X X Z HZ   (3.4)

where ( ' ) 'H X X X X and the residuals are e = (I-H)Z. In a linear regression model, X is

assumed to be a constant matrix, which is no longer true in the present situation. Moreover, the
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zt's are assumed to be independent in the linear regression model. An observation could be

deleted without affecting the consecutive ones and the deletion of an equation is equivalent to the

deletion of an observation. In the time series context, however, this is no longer true either. A

suspect observation, ZT, is involved not only in one equation but also in p + 1 consecutive

equations. Thus it is necessary to delete not only one equation but p + 1 equations.

Suppose that there is one suspected observation at t = T. The matrix X and vectors Z and

e can be partitioned as follows

1

2

3

( ) x p

(n ) x p

X T p
X X k p

X T k

 
   
    

1

2

3

( ) x 1
1

(n ) x 1

Z T p
Z Z k

Z T k

 
   
    

1

2

3

( ) x 1
1

(n ) x 1

e T p
e e k

e T k

 
   
    

(3.5)

where k is the number of equations that are to be deleted. The residuals, e, can be expressed in

the partitioned form as

11 12 13 1

21 22 23 2

31 32 33 3

I H H H Z
e H I H H Z

H H I H Z

     
         
        

(3.6)

Where ( ' ) ', i, j 1,2,3.ij i jH X X X X  Following the suggestion of Draper and John (1981) for

regression situations, we consider the statistics

1
( ) 2 22 2' ( )k TQ e I H e  (3.7)

When k = 1, e2 = eT, and when k = p + 1, e' = (eT, . .. , eT-p). Now ( )k TQ could be decomposed

into two terms
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( ) 2 2 * 1 1 3 3 *

1( ) 2( )

( )(X X X X )( )k T

k T k T

Q e e
Q Q

         

 

   
(3.8)

1
* 1 1 3 3 1 1 3 3(X X X X ) (X X )Z Z        is the estimate of φ after deleting k equations. It is found in

simulations that the statistics ( )k TQ , 1( )k TQ and 2( )k TQ are useful indicators for outliers.

3.1.1 Asymptotic Distribution

We consider the statistics maxQk(t), maxQkl(t), and maxQk2(t) for identifying outlier

locations for which the sampling properties of these statistics are required. The exact sampling

distributions are difficult to come by, however, and hence we appeal to large-sample theory. If

there are no outliers, it is well known that ̂ converge in probability to  . Then

*
1( ) ( )

1
* 2 2 2

( ) ( ) ,

p

k t k t

t k

k t i k
i t

Q Q

Q a  
 





  
(3.9)

*
( ) ( ) 2( )

*
1( ) ( )

*
( ) ( )

, 0,

max max ,

max max

p p

k t k t k t

p

k t k tt t
p

k t k tt t

Q Q Q

Q Q

Q Q

 





Then it can be shown that

*
( )(max ( )) , constantk t mt

P Q C e     (3.10)

For a given significance level α and Fk(.) denote the cumulative distribution function of

chisquare, then

1 ln(1 )( ) [1 ]m kC F
m



 
  (3.11)
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3.1.2 Simulation Study
Here a simulation study to gain some understanding of the accuracy of the extreme-value

type of approximations made was conducted. Samples of size n = 100 and 200 were generated

from the following models:

1

1 2

1: 0.5
2 : 0.5

(0,1)

t t t

t t t t

t

Model z z a
Model z z z a

where a



 

 

  



For Model 1, the statistics maxQk(.) and maxQkl(.) were calculated for k = 1 and 2,

whereas for Model 2 these values were calculated for k = 1 and 3. This process was repeated

1,000 times. The 1%, 2.5%, 5%, and 10% significance points were estimated. These are shown

in Tables 3.1to 3.4, together with those obtained from the extreme-value approximations. Since

calculations were done in double precision and large storage was required, it was decided to limit

the number of simulations to 1,000. The estimated 2.5% significance points from 500

simulations were almost the same as those from 1,000 simulations. We also felt that 1,000

repetitions would yield fairly accurate estimates of the 1% significance points.

The results indicate good agreement between the simulated values and the extreme value

approximations. For example, when n = 100 and k = 2 (Model 1, Table 3.3), the 10%

significance point from the approximation is 13.34, the simulated value for maxt Qkl(t) is 13.25,

and that for maxt Qk(t) is 13.53. When n = 100, k = 3 (Model 2, Table 3.4), the 10% significance

point from the approximation is 15.11, the simulated value for maxt Qkl(t) is 14.85, and that for

max Qk(t) is 15.30. Similar agreement is seen for other significance levels and other sample sizes

also. In our experience, the plots of the statistics introduced are usually sufficient to spot the

outlier locations and types.
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Table 3.3 Significance points for Q when p=1 and k=1 of Model 1.

n Type
α

0.1 0.05 0.025 0.01

100

EV 10.71 12.05 13.38 15.13

Q11 10.73 12.36 13.67 15.72

Q1 10.88 12.44 14.03 15.73

200

EV 12.01 13.36 14.68 16.47

Q11 11.85 13.42 14.68 16.12

Q1 11.98 13.43 14.75 16.17

Table 3.2 Significance points for Q when p=2 and k=1 of Model 2.

n Type
α

0.1 0.05 0.025 0.01

100

EV 10.69 12.04 13.36 15.11

Q11 10.70 12.20 13.61 15.51

Q1 10.87 12.36 13.85 15.7371

200

EV 12.00 13.35 14.67 16.45

Q11 11.80 13.46 14.44 15.99

Q1 11.99 13.56 14.53 16.11

Table 3.3 Significance points for Q when p=1 and k=2 of Model 1.

n Type
α

0.1 0.05 0.025 0.01

100

EV 13.34 14.83 16.26 18.12

Qk1 13.25 14.49 15.98 17.71

Q1 13.53 14.68 16.34 18.04

200

EV 14.80 16.25 17.67 19.51

Qk1 14.38 15.79 17.00 18.99

Q1 14.53 15.83 17.22 19.31
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Table 3.4 Significance points for Q when p=2 and k=3 of Model 2.

n Type
α

0.1 0.05 0.025 0.01

100

EV 15.11 16.73 18.25 20.21

Q11 14.84 16.24 17.95 19.69

Q1 15.30 16.91 18.57 20.67

200

EV 16.70 18.38 19.81 21.85

Q11 16.16 17.73 18.92 21.12

Q1 16.44 18.09 19.26 21.39

The patterns of the diagnostic statistics for an AR(p) model are discussed and indicated

that these patterns can be used to detect and identify outlier types even when the model is over

fitted. In general, the process may not be autoregressive. Suppose that the true process is

ARMA(p, q) as given in equation 1.11. Often such processes can be approximated by an AR(p +

q) model as described in Box and Jenkins (1976). In practice, for outlier detection, we found this

to be a good approximation. Our model building strategy then starts with the fitting of a

sufficiently large AR process. Based on the outlier detection methods discussed in the previous

sections, a model building procedure is put forward.

Table 3.5 Patterns of Q statistics assuming an outlier at t=T.

Statistic IO outlier AO outlier
11Q , 1Q , k=1 Only high value at t=T All the values at t= T,

T+1,…,T+p are affected

12Q , k=1 All the values at t= T, T+1,…,T+p
may be  affected

All the values at t= T,
T+1,…,T+p are affected

( 1)1PQ  , (p 1)Q  , k=p+1 Large values at t=T-p,T-p+1, …T. The values at t=T-p, T-p+1,
…T. are affected and
maximum value at t=T

( 1)2PQ  , k=p+1 The values at t=T-p,T-p+1, …T.
may  affected

The values at t=T-p,T-p+1,
…T. are affected and
maximum value at t=T
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We now illustrate the four-step model building procedure. Consider an out-procedure

using the first 100 observations from Series- A (chemical process concentration readings) of Box

and Jenkins (1976), where the model employed by the authors is ARMA(1, 1). An AO be the

position outlier at t = 43 by subtracting 1 unit from the original observation. The data is analysed

with mean, μ = 17 is subtracted to adjust. Tentative model selection suggests p* = 3. Then the

estimates, φ* = (0.228, 0.263, 0.140)', are computed by fitting the model. The plots of Q1(t) and

Q4(t) are shown in figure 3.1 and they indicate that the observations 43 and 64 may be discrepant.

Now

and 
1( )(max / 22.72) 0.01tt

P Q   

The patterns of the statistics suggest that the 43rd observation is an AO outlier. Deletion

of equations corresponding to Z43, Z44, Z45 and Z46 leads to φ* = (0.326, 0.271, 0.145)' and y43 =

0.515. Then the second iteration with the cleaned series gives φ* = (0.325, 0.271, 0.155)'. It now

appears that Q1 has a single large value at t = 64, Ql(64)/σ2 = 23.90, indicating the presence of an

IO outlier as shown in figure 3.2. After deleting the equation for Z63 and estimating the

parameters, the series is cleaned. Now the third iteration leads to small values for maxQ1(t) and

maxQ4(t). Hence no more outliers are suspected and the iteration is terminated. Further model

specification suggests an ARMA(1, 1) process and the maximum likelihood estimates are

2ˆˆ ˆ0.94, 0.58 0.087.and    

The proposed outlier detection strategy is simple and intuitively appealing, and it seems

to work reasonably well in a number of examples. It can be made easily as a part of the existing

time series softwares.

 2 2
1( ) 1(43)/ / 22.72tQ Q  
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Figure 3.1 Q1(t) and Q4(t) after the First iteration.

Figure 3.2 Q1(t) and Q4(t) after the Second iteration.

3.2 Q-Statistics in Financial Time Series

Consider an ARCH(1) model described in section 1.4.1. As in Tsay (2002) the ARCH(1)

model can be converted to AR model. Then the diagnostic measures described in section 3.1 can

be directly applied to the series.

The statistics QT(k) and QT1(k) are useful indictors of  outliers.
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QT (k) = e2’(I-H22)-1e2 (3.12)

They may be used to distinguish an AO outlier from an IO one. If the outlier at t=T is

AO, then Q1(T) and Q1(T+1) are large compared with the rest. But only Q12(T)  is larger than the

others. If the outlier at t=T is IO, then Q1(T) are large compared with the others. The probability

distribution of the test statistic is difficult to determine in the financial time series set up since the

error distribution is chisquare. Hence the critical value of the test statistic is determined by

simulation.

We conducted a simulation study to observe the pattern of Q-statistics with a sample size

100 for an ARCH(1) model with an additive outlier at t=22. The graphical outcome of the test

statistic is shown in figure 3.3.

Figure 3.3 Q1(T)  and Q12(T) versus time data for the simulated data. This directly indicates

that the outlier is AO.

3.3  Forecasting
Let T be the point at which outlier is identified and if it is AO, then delete p equations (T-

p) to T from the data series. Then forecasts of the ARCH model can be obtained recursively as

those of an AR model.

Consider an ARCH(m) model. At the forecast origin T, the 1-step-ahead forecast
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  2 2
0 1 1 11 ...t t m t mh          

and the k-step-ahead forecast

 2
1 0 1 1t t th e h     

The optimal predictor, ℎ , of the conditional variance for forecast horizon ‘s’ is the conditional

expected value of ℎ , that is ( )t sE h  .  It is easy to show that:

      
1

1
0 1 1 1 1 1

1

s
s

t s t s t
i

h E h h    



  



      

where  2
1 0 1 1t t th e h      is known at time t.

The necessary and sufficient condition for the existence of the unconditional variance is

0
1 1

1 1

( ) of is 1
1t tVar e e  
 

  
 

3.4 Conclusions
We have considered some statistics available in the regression analysis to detect outliers

in time series and financial time series. Here we have considered the Q statistics to detect outliers

in ARCH (1) models. Specification of outlier with the same statistic is also described. After

detecting the outlier, traditional methods can be used to clean the series and the m-step ahead

forecast can be used to correct the affected observations. The use of this statistics in the outlier

detection of GARCH process is used for further study.
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CHAPTER 4

SHOCK DETECTION IN STOCK EXCHANGE

BSE (Bombay Stock Exchange) Limited was established in 1875 and it is the Asia’s

fastest stock exchanges with a speed of 200 microseconds, and  the world’s third largest leading

exchange for Index option trading (from March 2014 onwards, source: World Federation of

Exchange). The total market capitalization is of USD 1.151 Trillion for the companies which

listed on BSE Ltd as of May 2014, given in Wikipedia, and the Free Encyclopedia (2014).

Standard & Poor's (S&P) BSE index consists of the following sector names as follows Auto,

Banks, Consumer Durables, Capital Goods, FMCG, Healthcare, IT, Metal, Oil & Gas, Power,

and Technology. These sectoral indices have significantly received a large amount of money

from Foreign Institutional Investors (FIIs) and also have a large number of subsets contained in

these broad sectoral indices, which provide a great trade-off platform for the intercontinental

traders to invest their stocks in the Indian market. The highlight of the increasing SENSEX aids

the sectoral indices that have outperformed others from 1 January 2013 to March 2014, by

Priyanka (2014).

Shocks in sensex data may be associated with several extraordinary economic events such

as financial crises, recessions, calamities on earth, weather and changes in Fed policy. Structure

changes and outliers are very common in financial data and lead to erroneous conclusions due to

important model misspecification. If the type and date of the disturbances are known, then their

effects can easily be controlled.

In a recent study, Bologna and Cavallo (2002) investigated the stock market volatility in

the post derivative period for the Italian stock exchange using Generalised Autoregressive

Conditional Heteroscedasticity (GARCH) class of models. To eliminate the effect of factors

other than stock index futures (i.e., the macroeconomic factors) determining the changes in

volatility in the post derivative period, the GARCH model was estimated after adjusting the
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stock return equation for market factors, proxied by the returns on an index (namely Dax index).

In the present study, following the method used by Bologna and Cavallo (2002), a GARCH

model has used to empirically evaluate the effects on volatility of the Indian stock market and to

see that what extent the change (if any) could be attributed to the introduction of index futures.

Bologna and Covalla also found that in the post index-future period, the importance of ‘present

news’ has gone up in comparison to the ‘old news’ in determining the stock price volatility.

4.1 Empirical Analysis

Daily data of BSE sensex has been used for the period from July 1997 to July 2012. The

older S& P BSE sensex data can be downloaded from the website of Bombay Stock exchange of

India (http://www.bseindia.com/). All share index and compared these results with the inflation

rates for the period 1997-2012. This research work relied on information from documentary

source or secondary data.

Figure 4.1 Plot of logaritham of close value of BSE sensex from July 1997 to July 2012.
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Following Bologna and Cavallo (2002), this work uses Generalised Autoregressive

Conditional Heteroscedasticity (GARCH) framework to model returns volatility. The GARCH

model was developed by Bollerslev (1986) as a generalised version of Engle’s (1982)

Autoregressive Conditional Heteroscedasticity (ARCH). In the ARCH model, the conditional

variance at time ‘t’ depends on the past values of the squared error terms and the past conditional

variances. From the time series plot of the original close values, it is clear that the process is not

stationary. So the volatility has been estimated on return (Rt) which is defined as

Rt = log (Pt /Pt-1) (4.1)

where Rt is the logarithmic daily return at time t and Pt-1 and Pt are the daily price of an asset at

two successive days t-1 and t, respectively. The return series is represented in figure 4.1. The

table 4.1 describes the summary statistics of the selected daily close and the log return which

helps to understand the properties of the data.

Table 4.1 Descriptive statistics of the log return and daily close.

Summary Statistics Log Return Daily Close

Mean -7.5012x 10-06 9146.029
Standard Error 0.000649034 96.18594
Median -0.000353566 6246.04
Standard Deviation 0.039665467 5880.73
Sample Variance 0.001573349 34582985
Kurtosis 4.530970047 -1.36605
Skewness -0.124074112 0.501286
Range 0.54606627 18404.84
Minimum -0.293557384 2600.12
Maximum 0.252508886 21004.96
Sum -0.02801713 34187856
Count 3735 3738
Largest(1) 0.252508886 21004.96
Smallest(1) -0.293557384 2600.12
Confidence level (95.0%) 0.001272495 188.5821
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4.2 Fitting GARCH (1, 1) Model
To fit an appropriate GARCH model for the estimation of the conditional market

volatility BSE Sensex close, firstly we considered the autocorrelation function and partial auto

correlation functions. The same values are calculated and the following figure 4.2 shows their

significance in the fixation of order of the model. However, squared residuals from the stock

returns equation exhibit autocorrelation.

Using R software packages, we estimated the parameters of GARCH (1, 1) and test their

significance. The programme used in R is illustrated below

library(tseries)

d = read.table ("mydata/logrt.dat")

arch.d = garch (d,order=c(0,1))

summary (arch.d)

Figure 4.2 Plot of ACF & PACF of square of log returns.
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Figure 4.3 Plot of square of log returns.

The output is described below:

***** RELATIVE FUNCTION CONVERGENCE *****
FUNCTION -1.091169e+04                        RELDX        8.382e-06
FUNC. EVALS      71                                      GRAD. EVALS      27
PRELDF       4.098e-11                                 NPRELDF      4.098e-11

I      FINAL X(I) D(I) G(I)
1    2.066426e-04     1.000e+00 -4.330e+00
2    5.319016e-01     1.000e+00 -4.996e-03
3    3.930037e-01     1.000e+00 -9.053e-03

Call:
garch(x = y, order = c(1, 1))

Coefficient(s):
a0         a1 b1

0.0002066  0.5319016 0.3930037

Call: garch(x = d)
Model: GARCH(1,1)
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Residuals:

Min 1Q Median       3Q Max

-4.69464 -0.62380 -0.01216 0.65214 5.78262

Coefficient(s):

Estimate Std. Error t value Pr(>|t|)

a0 2.066e-04   1.406e-05    14.70   <2e-16 ***

a1 5.319e-01   3.369e-02    15.79   <2e-16 ***

b1 3.930e-01   2.254e-02    17.44   <2e-16 ***

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Diagnostic Tests:Jarque Bera Test , data:  Residuals

X-squared = 194.09, df = 2, p-value < 2.2e-16

Box-Ljung test

data:  Squared.Residuals

X-squared = 24.473, df = 1, p-value = 7.536e-07

The fitted model for log returns of daily BSE Sensex close is as follows:

   
2

1 1

0, , 0,1 ,

0.0002066 0.5319016 0.3930037

t t t

t t t

t t t

z h

N h z iidN

h h





  



  

 

(4.2)

Diagnostics were performed with the residuals from the two returns equations.

4.3 Diagnostics for the GARCH (1,1) Model
Once volatility clustering is confirmed, our focus is on determining the fitted GARCH

model applicable to the return series. We first estimate the parameters, namely for the GARCH

(1, 1) model. As the GARCH model is analogous with an ARMA model, often such processes

can be approximated by an AR(p+q) model. Then the diagnostic measures proposed in the

section 3.1 can be measured and the results of Q values obtained is displayed by the following
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plot for k=1, 2 and 3. From the graph, it is clear that at point t =1708 an outlier effect is present.

As a result of this the 2 observations at the time point t=1707 and t=1708 has to be deleted. For

replacing this value we can use one step ahead forecast of the model at the point t=1707 and two

step ahead forecast at t=1708.

Figure 4.4 Q11 and  Q1 for squared log returns of daily close of BSE sensex.

Figure 4.5 Q2 and Q21 statistics for squared log returns of daily close of BSE sensex.
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From the calculation of Q statistics, it is clear that there is a presence of additive outlier in

the series and from diagnosing the original series, it is clear that the outlier occurred around the

month, September 2001.

Using the observations up to t=1708, a garch model is fitted as

2
1 1

(0, ), (0,1),

0.0006870738 0.2111966304 0.6663586989

t t t

t t t

t t t

z h
N h z iidN

h h




  



  

  (4.3)

The prediction of the outlier values is done using this model at t=1708, 1709, 1710 and

replaced the original values by this estimate and tested for outlier. But no further deviations in Q

statistic is observed.

4.4 Conclusions
Using GARCH methodology, the present work evaluated the impact of outlier model in

the conventional time series on volatility returns of Bombay Stock Exchange. Some regression

diagnostic measures available in the time series setup are applied to the financial time series set

up for detecting the extreme values. The simple GARCH (1, 1) model has been estimated for the

stock exchange close value of BSE Sensex. In conclusion, the empirical results of this study

indicated that there has been a change in the market environment since the year 2001, which is

reflected as abnormality in the BSE Sensex from September 2001.
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